Los Alamos SFA: Pu/Actinides in the Environment

Michael H. Ebinger, POC
Hakim Boukhalfa
Amr Abdul-Fattah
Peter Lichtner
Paul Reimus
Don Reed
Robert Roback

Los Alamos National Laboratory

April 9, 2008

Collaborators

At Los Alamos

- David Clark
- Mei Ding
- Yixiang Duan
- David Janecky
- Cheryl Kuske
- Jef Lucchini
- Wolfgang Runde
- Stephen Stout

Other Institutions

- John Bargar (SSRL)
- Larry Hull, George Redden (INL)
- Bruce Rittman (Arizona State University)
- Peter Santschi (*Texas A&M*)
- Jeff Terry (Illinois Inst. Tech)
- Geoff Smith (New Mexico St. Univ.)
- John Walz (Virginia Tech)
- Pawel Weronski (Polish Academy of Science)

Pu/Actinide SFA Motives

- Provide Better Understanding of Pu/Actinides in the Environment, Develop Coupled Process Models for Long-Term Stewardship.
- Pu Inventories at Several DOE Sites
 - Los Alamos
 - Hanford
 - Idaho

- ORNL
- Savannah River
- Rocky Flats
 - Nevada Test Site
- What Controls Pu/Actinide Fate in the Subsurface?
 - Intrinsic colloid formation, Pu association with natural colloids
 - Biogeochemical and hydrological processes that affect Pu subsurface fate and transport (e.g., Pu-organic forms; Pu redox; colloid formation)
- How Do We Predict Pu/Actinide Subsurface Transport?

Integrated LANL Research Program

Los Alamos

Program Scope & Direction

Incorporate Coupled Processes for Long-Term Stewardship Decisions

Text and Environmental Stiences

Fundamental Understanding Leads to Application at Multiple Scales

Fundamental Process Understanding

SFA Drivers: Public and Programmatic

- Significant Environmental Inventory
 - LANL, INL, Hanford, NTS, and maybe 11 other sites in US
 - Larger international inventory?
 - TRU and Nuclear Repositories (YMP, WIPP)
- High Public Visibility
 - Pu contamination, perceived or real, is scrutinized, publicized, and criticized by government agencies and public interest groups (300 hits for Pu on Concerned Citizens website alone).
- Complex Behavior, not Understood Well
 - Colloid-facilitated transport: a significant factor.
 - Biological processes affect Pu redox & speciation.
 - In the Lab: multiple redox states and distinct species.
 - In environment: sorption, move as or with colloids, or soluble species.

Technical and Scientific Research Questions

- What Controls Pu/Actinide Fate and Transport?
 - Source terms and source forms.
 - Range of redox and chemical conditions in actual subsurface environments.
 - Relevant biogeochemical & hydrological mechanisms in subsurface environments?
 - Colloid and colloid-facilitated transport; soluble Pu-complexes?
 - Data needs for models?
- How are Fate and Transport Predicted in Subsurface Environments?
 - Subsurface characterization needs?
 - Modeling approaches and appropriate scales?
 - Data needs for models?
 - Calibration of model predictions/simulations?

Guiding Ideas and Hypotheses

- We can bound the range of biogeochemical hydrological conditions from site characterization data.
- Colloids and complexed Pu are key forms for transport.
- Initial waste form and subsurface biogeochemistry determine Pu species formation and stability.
- Site-specific conditions and transients are key to understanding transport.
- Redox cycling is an important process in Pu fate and transport.

Coupling of colloid behavior, biogeochemical and hydrological processes will be integrated via modeling.

Bound Biogeochemical & Hydrological Environments using Site Characterization

- Riley & Zachara review (1992) and new site characterization since (e.g., EM Programs at LANL; work at Rocky Flats; RIBRA at INL)
- Applications of new technology to existing subsurface data; Information from IFCs
- Source form could be Pu oxides, aqueous Pu, associated/complexed Pu or ?
- Source terms could vary from less than pCi/kg levels to > 10⁶ pCi/kg depending on site, processes, medium.
- Interaction between waste form and site-specific hydrology and biogeochemistry will be key in fate and transport.

Pu Transports as Colloids

- Significant fraction of source term that transports is in colloidal or Pu-colloidal form.
- Colloids/Pu-colloids behave as "fast-lane vehicles" for transport in subsurface environments.
- Pore-scale colloid attachment and detachment kinetics are important.
- Pu partitioning between solution, immobile matrix, and mobile colloids.
- Sufficient quantity, limited colloid filtration, colloids stable

Pu Transport as Soluble Complexes

- Biogeochemical and hydrological conditions (e.g., redox, pH) favorable for formation of soluble Pu complexes (e.g., Pu-siderophores; Pu-EDTA; Pucarbonates)
 - Conditions that stabilize oxidized Pu(V) and Pu(VI) (both more soluble than reduced Pu(III) and Pu(IV))
 - Under reducing conditions redox cycling between Pu(III) and Pu(IV) that leads to increased solubility.
- Pu partitioning between solution, immobile matrix, and mobile colloids.

LANL SFA Proposed Timeline

How Will We Accomplish This?

Review and Redirect

FY 08

Field-Derived Samples

Field Testing

FY 12

Fundamental

Understanding

Lab experiments

Experiments conducted with site-specific materials

Model experimental results

Molecular to column scale

Collaborations (SSRL, INL)

Lab results & methods as guides

Move into larger scales (column, larger)

Bound experiments with biogeochemical-hydrological conditions.

Continue collaborations

LANL as

Collaborator with IFC(s)

Models of processes at different scales

Review and Redirect

Coupled Processes used for Long-Term Stewardship

